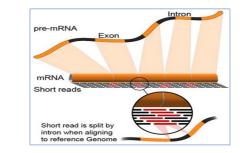
Single Cell RNA-seq DE Analysis

Xin-Qiao Zhang Ph.D Dec 11, 2020

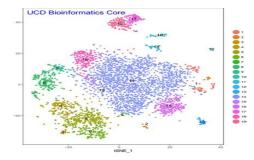
Part I Background

Part II Public Resources

Part III Example 1

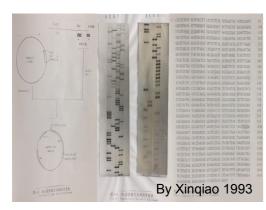

Part IV Example 2

Part I Sequencing Background



Microarray

Next Generation Sequence. RNA-seq



scRNA-seq

Sanger sequencing

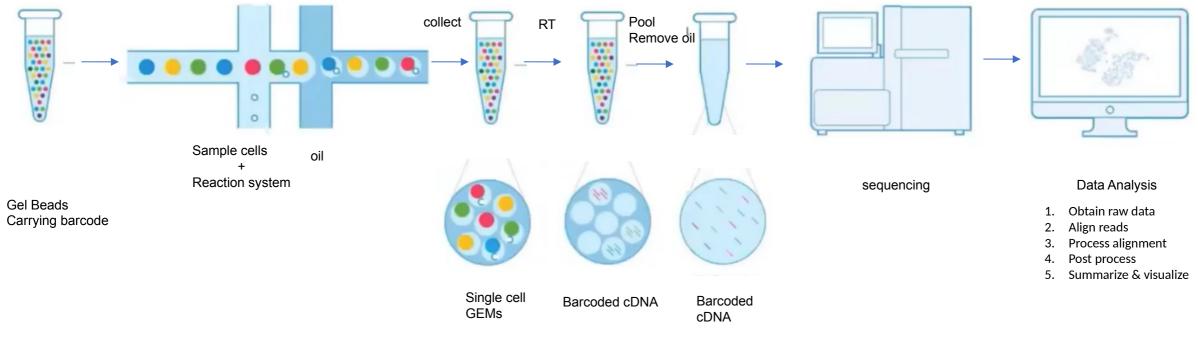
Tips

- In vitro DNA replication
- 1977 developed, 1986 commercialized
- Selective incorporation: chain-terminator

Tips

- Whole picture of gene expression
- Splicing, transcript isoform
- Fusion detection, mutation discorvery
- For DE: one cell line as one sample, divide samples into two or more groups

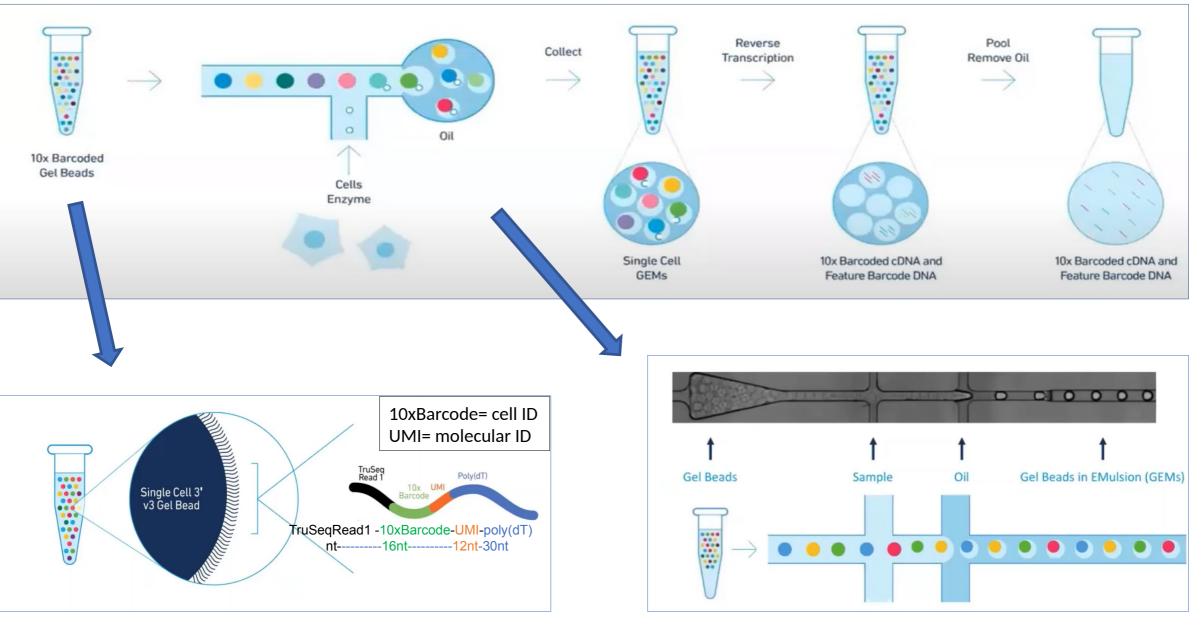
Tips

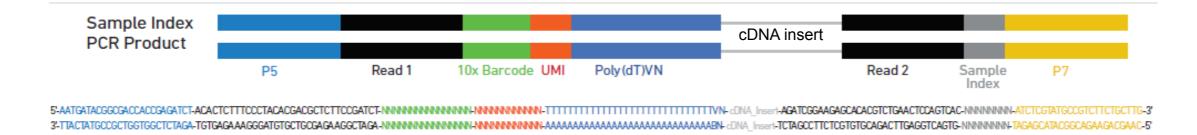

- Identify cell population
- Uncover novel cell type, cell status, rear cell
- Discover new marker, gene signatures
- Profiling heathy and diseased tissues

Tips

- Complementary probe hybridization
- Non radioactive isotope
- Fragment sequencing

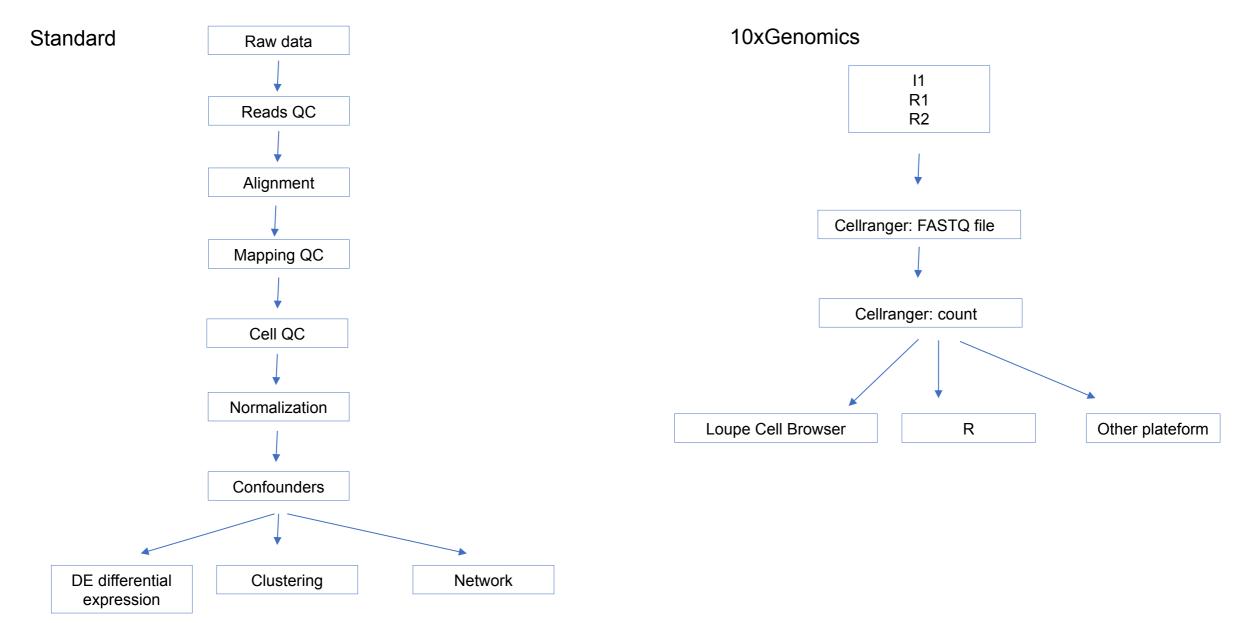
- 1. Measures the **distribution of expression levels**: each gene across a population of cells
- 2. Commercial platform: **10x Genomics Chromium**, Fluidigm C1 and Watergen ICELL8
- 3. Advantage
 - Cell type specific gene expression pattern
 - Easy to remove duplicate,
 - Characterize and identify heterogeneous cell population
 - Discover new cell markers & regulatory pathways
 - Uncover novel cell types, cell status and rare cell types
 - Study cell-specific changes
 - Comparing distribution


10xGenomics: Chromium Single Cell Gene Expression: Workflow


GEMs (Gel Beads-in-Emulsion)

From 10xGenomics

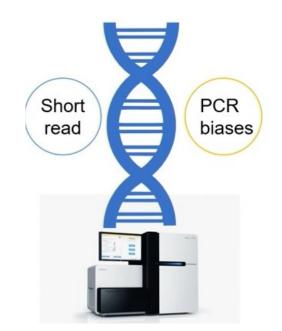
10xGenomics: Chromium Single Cell Gene Expression: Workflow


Single Cell 3' Gene Expression Library

UMI (unique molecular identifier): molecular barcode, add during RT before PCR10xBarcode:cell barcode,add during RT before PCR

	Read 1	i7 index	i5 index	Read 2
Purpose	Barcode & UMI	sample Index	n/a	Transcript
Length	28	8	0	91

scRNAseq Analysis Workflow



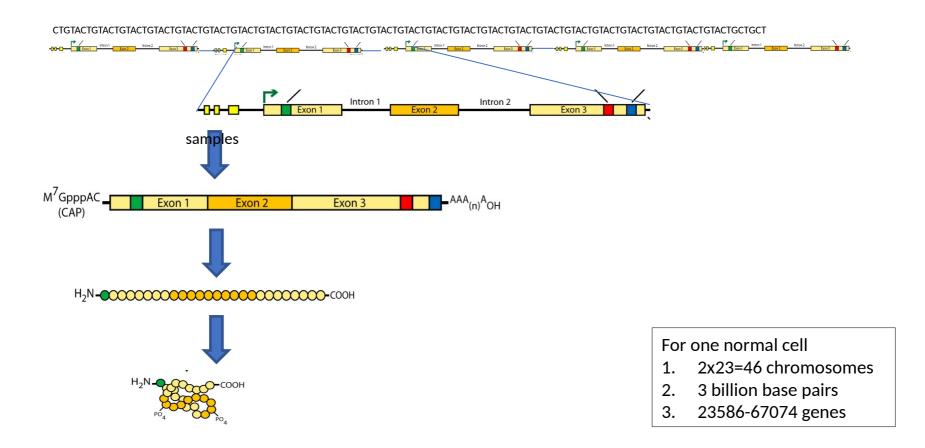
scRNAseq Issues

- 1. Remind: garbage in, garbage out
- 2. Sample: purity, quantity, quality
- 3. Revers transcription efficiency: < 30%
- 4. Exons: separated by large introns
- 5. Gene 'dropout':

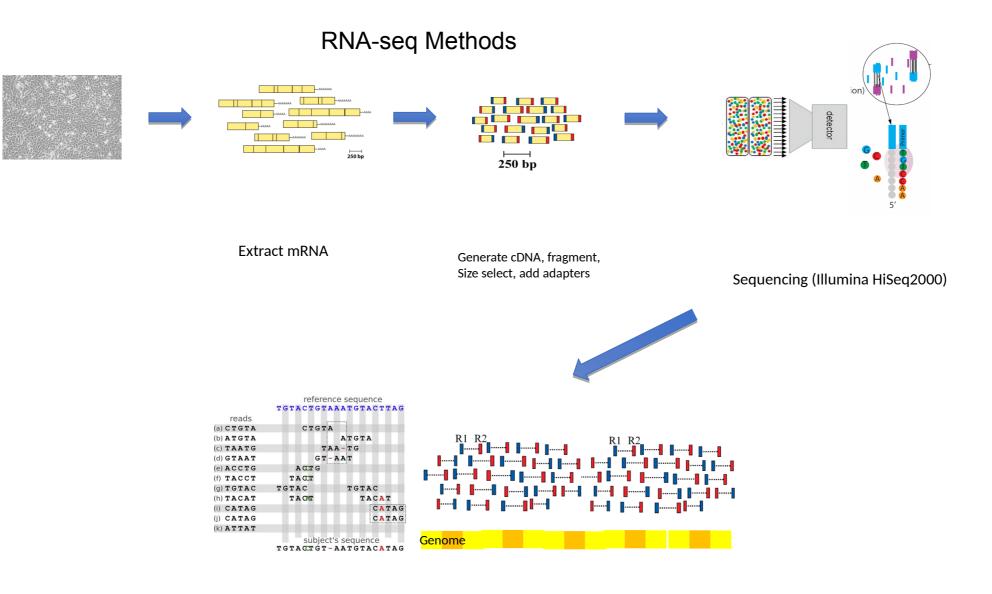
scRNAseq

- Low starting amount: since RNA from one cell
- Technical factor
- Observed zero values:
- 6. mRNA relative abundance vary wildly
 - 10e5-10e7 orders of magnitude
 - Highly expressed genes consumes the majority reads
- 7. mRNA comes in a wide range of sizes
 - Small RNAs need be captured separately?
 - PolyA selection of large RNAs may results in 3' end bias
- 8. PCR bias
- 9. Unwanted variability introduced by batch effects

Single Cell RNA-seq Quality Control


- Mitochondrial fragment for cell status
- Library size: total number of reads counts
- Detected genes
- ERCCs (external RNA control consortium) and MTs amount
- ➤ Gene QC

RNA-seq


- 1. Measures the average expression level for each gene across a large population of cells
- 2. Advantage
 - > Useful for comparing differential expression
 - Interpreting mutation
 - Prioritizing protein coding mutation: if no expression, not interesting,
 - Heterozygous mutation expression: wild type allele, lost function; mutant allele, a candidate drug target
 - Useful for quantifying expression signature
- 3. Disadvantage:
 - Does not provide insights

RNA-seq

Central Dogma of Molecular Biology: concept still important

RNA-seq

RNA-seq analysis

- 1. Alignment and QC
- 2. Count read for each gene
- 3. Differential expression (DE) analysis: limma, edgeR, DESeq2
- 4. Further functional validation: pathway,

Part II Public Resources

1. scRNA-seq and RNA-seq data from public resource:

- 1) SRA: sequence read archive, raw sequence data
- 2) CCLE:(https://portals.broadinstitute.org/ccle) RNAseq, Expression, fusion....
- 3) ExpressionAtlas: EBI, Homo sapiens 1449 experiment, (https://www.ebi.ac.uk/gxa/home)
- 4) **GEO dataset/Profiles**: processed data, (https://www.ncbi.nlm.nih.gov/sites/GDSbrowser/)
- 5) GTEx (https://www.gtexportal.org/home/) less cancer cell lines, mainly for normal cells
- 6) COSMIC: (http://cancer.sanger.ac.uk/cell_lines/sample/overview?id=687452) easy search
- 7) CELLX (http://cellx.sourceforge.net) not search easily for beginner
- 8) BioGPS (http://biogps.org/dataset/)

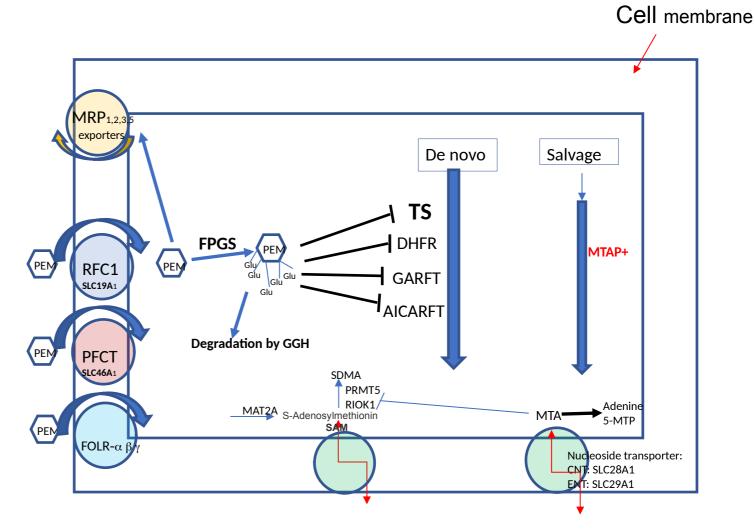
2. Drug IC50 from public resource and published paper

- 1) GDSC: IC50 of 518 drug IC50 on 988x cancer cell lines (http://www.cancerrxgene.org/)
- 2) PharmacoDB: combined CCLE, GDSC1000, gCSI, GRAY, FIMM, CTRPv2 and UHNBrease
- 3) CTRPv2: 481 compounds X 860 cancer cell lines

3. Public software packages

- Bioconductor: containing over 1903 software packages
- R and RStudio, Python
- 4. Public reference genome resource: (ENSEMBL) and gene annotation (gtf, gff)
- 5. Cloud server: Galaxy (also low cost cloud server: AWS-EC2, S3)

Part III Example 1


RNA-seq Predicting PEM Sensitivity on Bladder Cancer Cells

Pemetrexed (PEM)

 PEM: 1st line drug for NSCLC, 2nd line drug for bladder cancer
MTAP: S-methyl-5'-thioadenosine

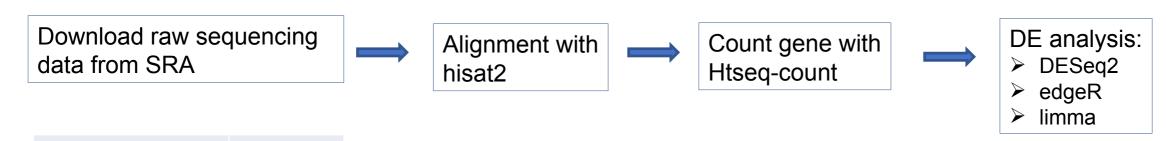
phosphorylase

- Looking for PEM sensitive/resistant gene
- One gene vs Gene Signature

Analyze RNA-seq Data from Public Resource for Predicting Drug Sensitivity

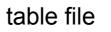
1. Get RNA-seq raw data from public resource:

- 1) SRA: sequence read archive, raw sequence data
- 2) CCLE:(https://portals.broadinstitute.org/ccle) RNAseq, Expression, fusion....
- 3) ExpressionAtlas: EBI, Homo sapiens 1449 experiment, (https://www.ebi.ac.uk/gxa/home)
- 4) GEO dataset/Profiles: processed data, (https://www.ncbi.nlm.nih.gov/sites/GDSbrowser/)
- 5) GTEx (https://www.gtexportal.org/home/) less cancer cell lines, mainly for normal cells
- 6) COSMIC: (http://cancer.sanger.ac.uk/cell_lines/sample/overview?id=687452) easy search
- 7) CELLX (http://cellx.sourceforge.net) not search easily for beginner
- 8) BioGPS (http://biogps.org/dataset/)


2. Get Drug IC50 from public resource and published paper

- 1) GDSC: IC50 of 518 drug IC50 on 988x cancer cell lines (http://www.cancerrxgene.org/)
- 2) PharmacoDB: combined CCLE, GDSC1000, gCSI, GRAY, FIMM, CTRPv2 and UHNBrease
- 3) CTRPv2: 481 compounds X 860 cancer cell lines

3. Public software packages for RNA-seq analysis


- Bioconductor: containing over 1903 software packages
- R and RStudio, Python
- 4. Public reference genome resource (ENSEMBL) and gene annotation (gtf, gff)
- 5. Local computer and cloud server (AWS-EC2, S3)

My analysis workflow

SRAnumber	Cell line
SRR5445845	253JP
SRR5445848	HT1197
SRR5445849	HT1376
SRR5445850	J82
SRR5445851	RT112
SRR5445852	RT4
SRR5445856	T24
SRR5445868	UM-UC3

bam file

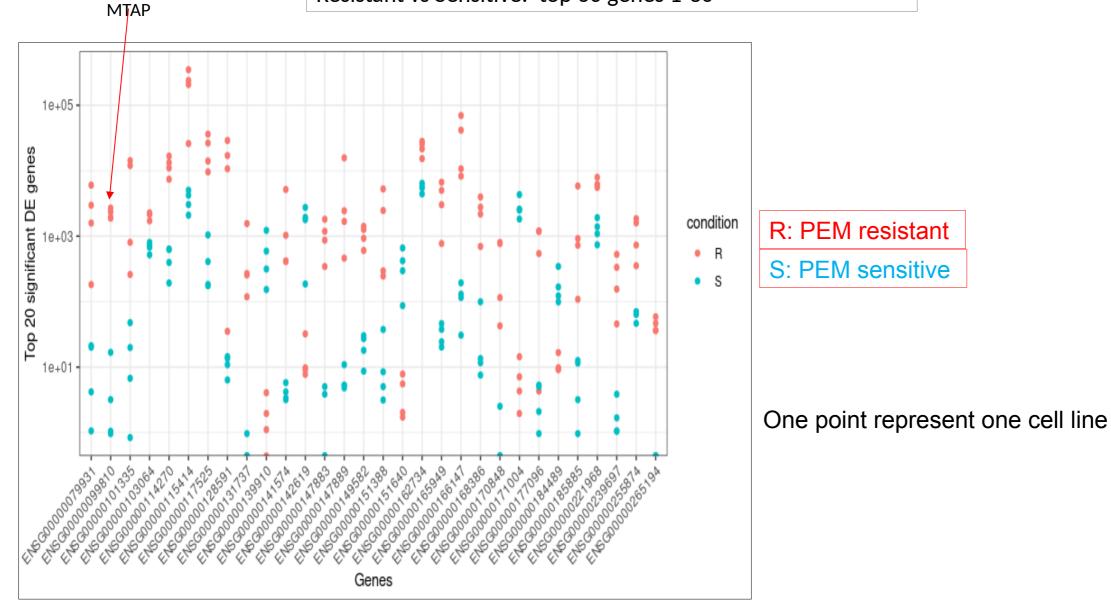
dataset

Compare gene expression difference in bladder cancer cell lines

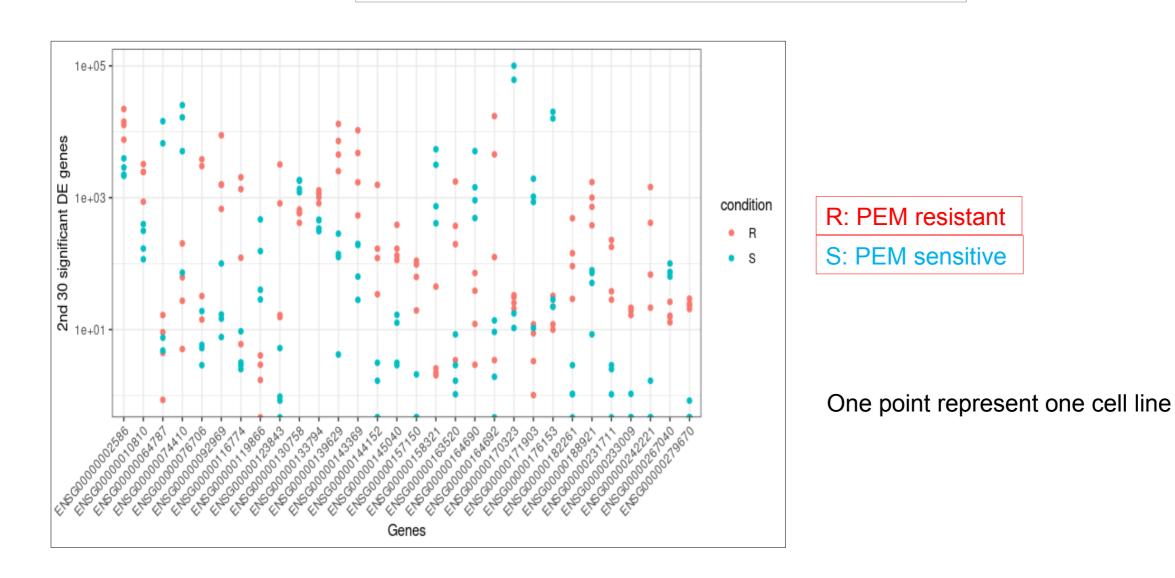
comparison	Cell line#		S	R
Comparison 1	8	R vs S	253, RT112, RT4, UC3	HT1197, HT1376, J82, T24

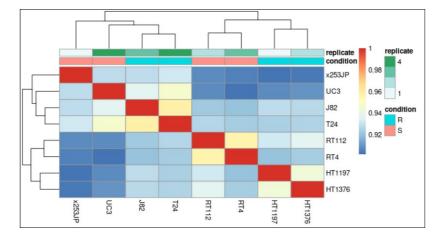
Interesting genes

- 1. FBN1, HS6ST2, AUTS2, CYP4F11, GPX2, PEA15
- 2. SLC7A6, NOVA1, OLFML3, MAP3K10, FABP4
- 3. MOXD1, FN1, FLNC, KRT34, PSG6, PHETA2, TNFSF12, CD99, C4BPB,
- 4. GALNT6, COL1A2, NLRP10, PSG2
- 5. IFI27, FILIP1L, MCAM, TGFB2, TIMP4, FBLN2, LINC00899,
- 6. MTAP, MYL9, COL7A1, F3, SECTM1, CDKN2B, CDKN2A, TMEM25, UCN2 PTP4A3

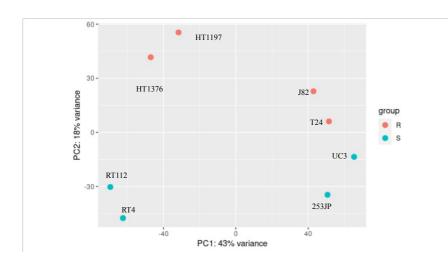

Gene cou	unt result b	v htseg	-count	package
		J		

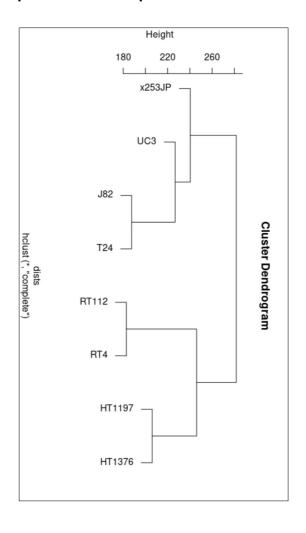
Gene count result by htseq-count package														
	⊟ ॸ ৫ - ∓											PRJNA38283	34Galaxy12Xs	trandno
F	File Home Insert Page Layout Formulas Data Review View Help Q Tell me what you want to do													
P	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
T	17 • : × •	f _x												
1	A	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	ensembl_gene_id_version	HT1197	HT1376	J82	T24	x253JP	x5637	RT112	RT4	SCABER	SW780	UC14	UC3	
2	ENSG000000003.15	1460	740	1421	1011	2530	2550	3650	7688	2373	4312	4082	1250	
3	ENSG000000005.6	0	0	0	0	0	0	0	0	0	0	0	0	
4	ENSG0000000419.12	1898	2481	4893	4711	1648	2722	3164	1471	1660	3630	2801	3529	
5	ENSG0000000457.14	414	567	294	477	391	503	677	709	656	712	462	405	
6	ENSG0000000460.17	794	1842	903	1182	879	991	1449	609	1051	963	1558	731	
7	ENSG0000000938.13	1	5	2	0	1	33	27	81	10	154	64	0	
8	ENSG0000000971.16	5	22	52	23	63	1433	1409	16905	58	149	2765	293	
0	ENISCO000001026 14	6690	2055	4070	2222	2214	2441	2505	1010	4155	2466	5	4200	

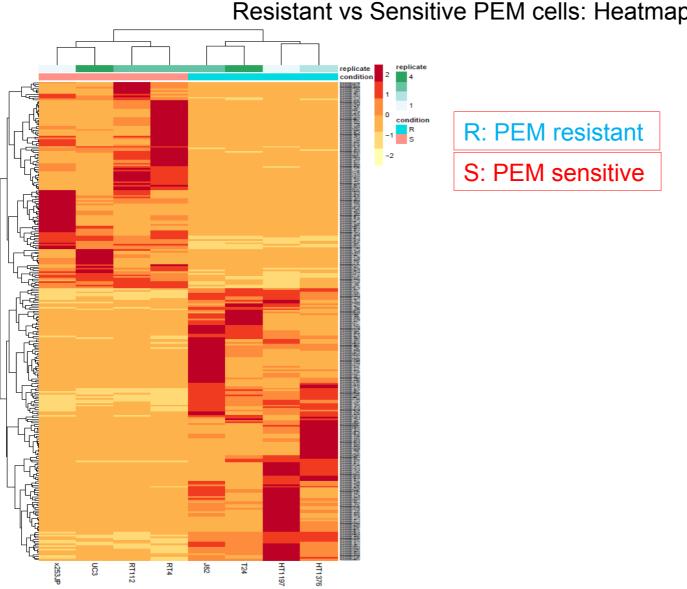

DE result by DESeq2 package


cipoona				1.011		1.41		Angrinistis
K12		- :)	× ✓	fx				
	А	B	с	D	E	F	G	Н
1		hgnc_sym	baseMear	log2FoldC	IfcSE	stat	pvalue	padj
2	17295	RDH10	276.4746	-7.79459	0.988528	-7.88504	3.14E-15	1.74E-11
3	7179	GLA	142.7769	-7.27546	0.956006	-7.61026	2.74E-14	7.59E-11
4	4339	CTXN2	1074.567	7.193303	1.024333	7.022429	2.18E-12	4.03E-09
5	493	AKAP5	5232.171	-9.79228	1.504718	-6.50772	7.63E-11	1.06E-07
6	7505	GPRC5C	138.1592	-4.24746	0.692677	-6.13194	8.68E-10	9.63E-07
7	13771	MUC2	274.9498	-11.6726	1.986545	-5.87581	4.21E-09	3.89E-06
8	7313	GOLGA1	91.99486	4.19473	0.742113	5.65241	1.58E-08	1.25E-05
9	20258	SYTL1	1745.445	6.292613	1.176442	5.348853	8.85E-08	6.14E-05
10	10749	LOC28402	32.093	-7.60399	1.455309	-5.225	1.74E-07	0.000107
11	5277	DZIP3	160.3066	8.83211	1.749414	5.048611	4.45E-07	0.000247
12	21540	TSPAN18	33.08024	-6.75104	1.357641	-4.97262	6.61E-07	0.000333
12	12406	MOUOCOL	373 3365	5 71 31 4	1 164206	4 00567	0 215 07	0 00042

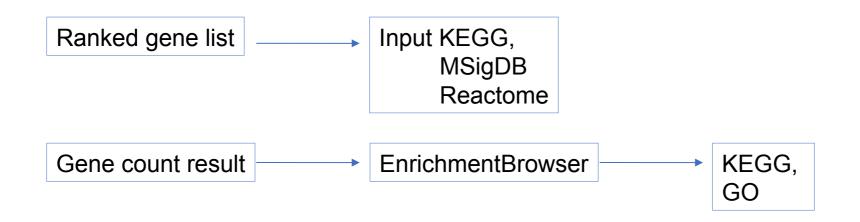
Resistant vs Sensitive: top 60 genes 1-30



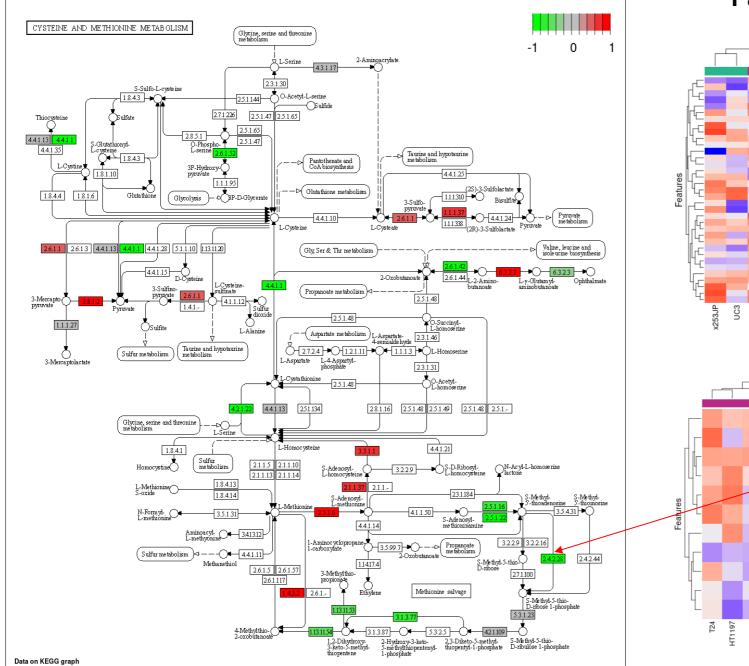

Resistant vs Sensitive: top 60 genes 31-60



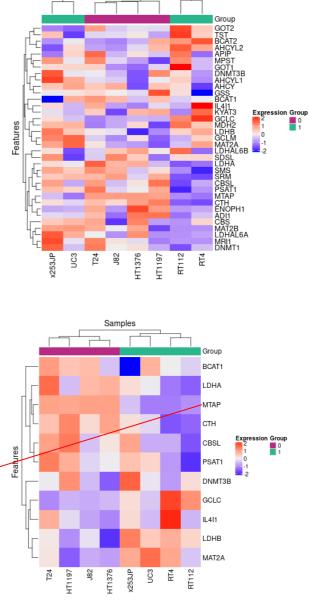
Resistant vs Sensitive PEM cells: Heatmap and PCA plot



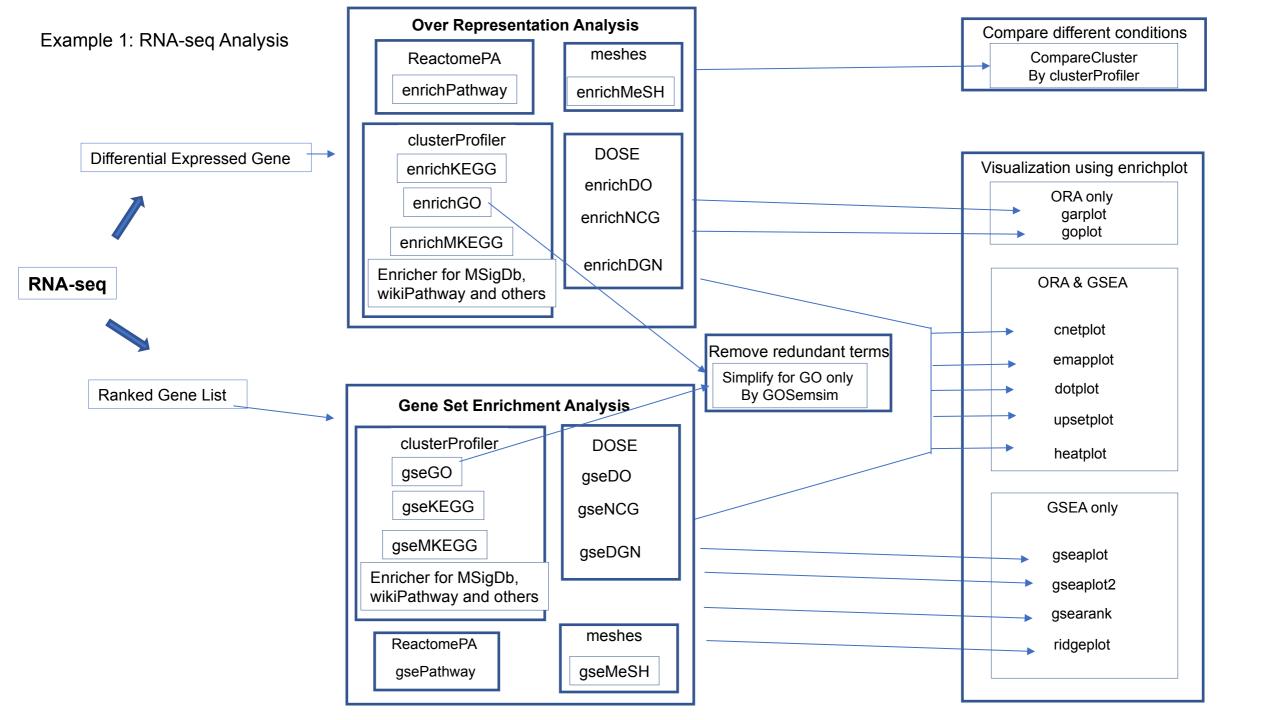
Resistant vs Sensitive PEM cells: Heatmap (p < 0.01)


Pathway/Gene Set Analysis

Pathway: a series of interactions among molecules in a cell, leads to a product or a change.

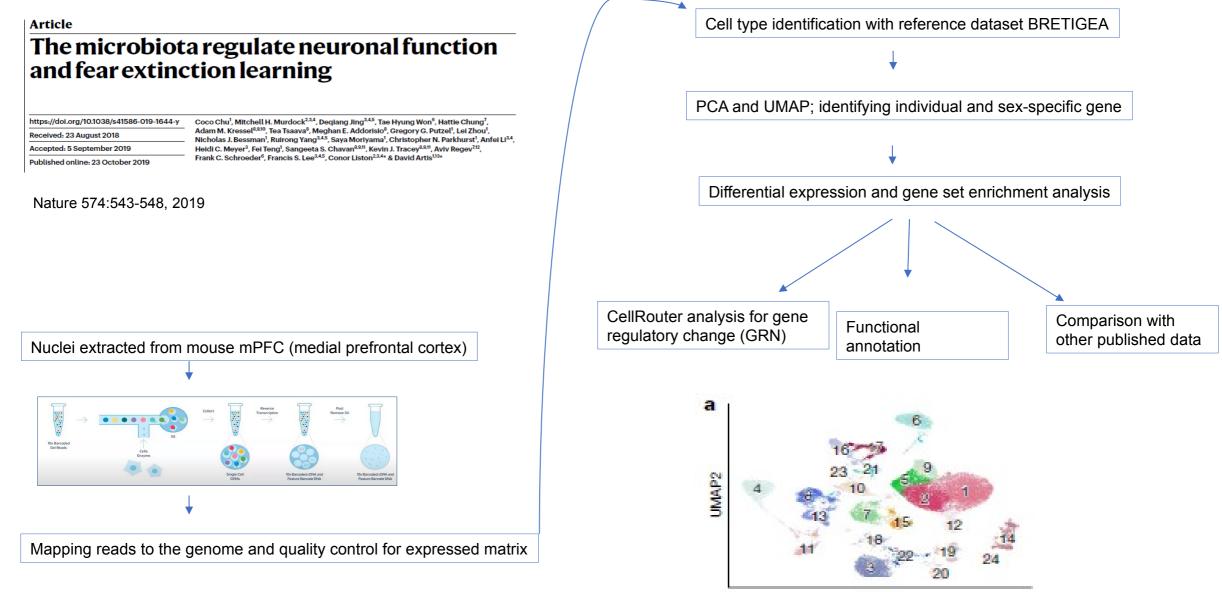

Gene set: an unordered and unstructured collection of genes, can be associated with:

- ➤ a specific biological process
- Location
- ➤ disease



Pathway Results

Samples


Data on KEGG graph Rendered by Pathview

Part IV Example 2

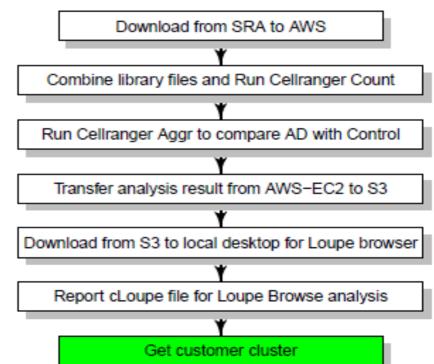
scRNA-seq Reanalysis on Entorhinal Cortex from Brain

Authors' data generation analysis on Cellranger and Loupe Cell Browser:

My analysis on Cellranger and Loupe Cell Browser

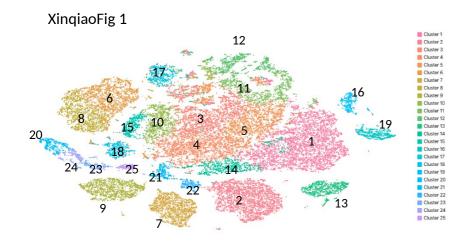
Article

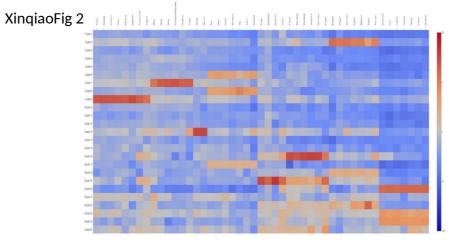
The microbiota regulate neuronal function and fear extinction learning


https://doi.org/10.1038/s41586-019-1644-y Received: 23 August 2018 Accepted: 5 September 2019 Published online: 23 October 2019

Coco Chu¹, Mitchell H. Murdock^{2,2,4}, Deqlang Jing^{2,45}, Tae Hyung Won⁶, Hattle Chung⁷, Adam M. Kressel^{8,30}, Tea Tsaava⁹, Meghan E. Addortislo⁸, Gregory G. Putzel¹, Lel Zhou¹, Nicholas J. Bessman¹, Rulrong Yang^{2,45}, Saya Moriyama¹, Christopher N. Parkhurst¹, Anfel Ll^{2,4}, Heidl C. Meyer³, Fel Teng¹, Sangeeta S. Chavan^{8,21}, Kevin J. Tracey^{8,21}, Aviv Regev^{7,2}, Frank C. Schroeder⁶, Francis S. Lee^{3,45}, Conor Liston^{2,2,4}* & David Artis^{13,4}

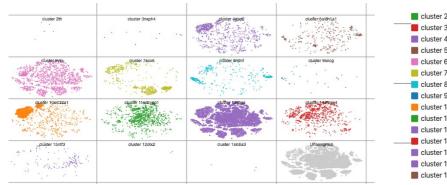
Nature 574:543-548, 2019

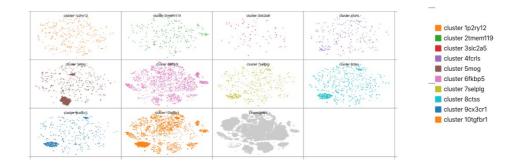

All single-cell RNA sequencing data are available from Sequencing Read Archive (SRA), with Download identifiers: GEO GSE135326, 4x samples (two treated, two control)

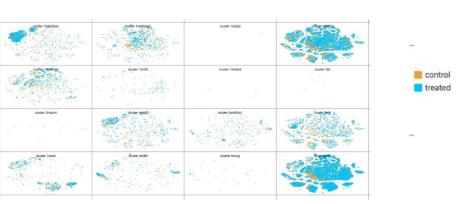

oomnlo	Saguanaa fila		
sample	Sequence file		
1	Artis_A3_I1_001.fastq.gz Artis_A3_R1_001.fastq.gz Artis_A3_R2_001.fastq.gz.part-aa Artis_A3_R2_001.fastq.gz.part-ab Artis_A3_R2_001.fastq.gz.part-ac	mouse	Treated
2	Artis_A4_I1_001.fastq.gz Artis_A4_R1_001.fastq.gz Artis_A4_R2_001.fastq.gz.part-aa Artis_A4_R2_001.fastq.gz.part-ab Artis_A4_R2_001.fastq.gz.part-ac	mouse	Treated
3	Artis_B3_I1_001.fastq.gz Artis_B3_R1_001.fastq.gz Artis_B3_R2_001.fastq.gz.part-aa Artis_B3_R2_001.fastq.gz.part-ab Artis_B3_R2_001.fastq.gz.part-ac	mouse	Control
4	Artis_B4_I1_001.fastq.gz Artis_B4_R1_001.fastq.gz Artis_B4_R2_001.fastq.gz.part-aa Artis_B4_R2_001.fastq.gz.part-ab Artis_B4_R2_001.fastq.gz.part-ac	mouse	control

Workflow

My analysis on Cellranger and Loupe Cell Browser: 15x clusters = 8 cell types




- a. Based on the authors' results, we identified cell types. Our 25 clusters are correlated with authors. Figure 1,2.
- b. Searching signature genes for dopamine cells with Gene/Feature Expession Mode. Using 15 dopamine cell marker genes, we find **Gad2**, **Sox6**, **Ndnf and Slc32a1** are neatly clustered and would be good candidates for dopamine cell analysis as figure 3. We further compared treatment mice with control mice with those dopamine genes, and noticed the different distribution.
- c. Searching signature genes for microglia cells with Gene/Feature Expession Mode. Using 10 microglia cell marker genes, we find Mog (for cluster 7); Ctss, Selplg, Cx3cr1 and Tgfbr1 (for cluster 9); Fkbp5 (for cluster 16 and 19) are neatly clustered and would be good candidates for cell analysis as figure 4. We further compared treatment mice with control mice with those microglia cell genes, and noticed upregulated expression for Fkbp5 gene in our cluster 16 and 19, consistent with original authors' volcano result in Extended Data Fig. 6. and Fig. 8 (6-Microglia, 19-Astrocyte 2, 20-Undermined 2, and 21-exPFC/Microglia)


Fig 4 microglia gene cluster


XinqiaoFig 3

Further reading and practice on melanoma scRNAseq

Toward Minimal Residual Disease-Directed Therapy in Melanoma

Florian Rambow,^{1,2,15} Aljosja Rogiers,^{1,2,15} Oskar Marin-Bejar,^{1,2} Sara Aibar,^{3,4} Julia Femel,⁵ Michael Dewaele,^{1,2} Panagiotis Karras,^{1,2} Daniel Brown,⁶ Young Hwan Chang,⁷ Maria Debiec-Rychter,⁸ Carmen Adriaens,^{1,2} Enrico Radaelli,⁹ Pascal Wolter,¹⁰ Oliver Bechter,¹⁰ Reinhard Dummer,¹¹ Mitchell Levesque,¹¹ Adriano Piris,¹² Dennie T. Frederick,¹² Genevieve Boland,¹² Keith T. Flaherty,¹³ Joost van den Oord,¹⁴ Thierry Voet,⁶ Stein Aerts,^{3,4} Amanda W. Lund,⁵ and Jean-Christophe Marine^{1,2,16,17,*} ¹Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Belgium ²Department of Oncology, KU Leuven, Leuven, Belgium

Cell 2018 Aug 9; 174(4):843-855.e19. PMID:30017245

Smart-seq2 single-cell RNAseq Raw data: GEO: GSE116237

Acknowledgement

MD Anderson Cancer Center UT

- William Benedict MD
- Monica Spears
- Jianjun Gao MD PhD
- Derek Ng
- Mark Titus PhD
- Jianfeng Cheng MD PhD

HSCSA UT

- Senlin Li MD PhD
- Shujie Zhao MD